
1

Paradise - Scalable Clusters for
EOSDIS

David DeWitt & Jeff Naughton
Computer Sciences Department

University of Wisconsin

Funding: NASA (CESDIS, AISRP, EOSDIS), ARPA, IBM, Intel,
SUN, Legato

2

Talk Outline

l Goals of the Paradise project

l Project Overview

l 1995 Activities & Current Status

l 1996 Plans

3

Goals of the Paradise Project

l Implement a DBMS capable of storing and
processing massive geographic data sets
including maps and satellite images

l DBMS for all data, not just the metadata

l Leverage ARPA-funded Gamma (parallel) and
SHORE (object-oriented) DBMS technology

l Integrated supported for tertiary storage

l Target application: EOSDIS

4

Paradise Features

l Speed
– innovative processing algorithms, storage structures, and

parallelism

l Ease of use
– declarative query language plus HDF support

l Scalability
– uses scalable multiprocessor platforms and support for

tertiary storage devices

l Data Integrity
– full concurrency control and recovery services

5

Paradise Data Model

l Object-relational data model

l Attributes of a tuple can be instances of:

– standard base types
l int, float, string, ...

– predefined GIS-specific ADTs:
l point
l polyline
l polygon

– HDF-specific ADTs:
l 2 dimensional raster (8, 16, or 24 bit)
l n-dimensional arrays (1 unlimited dimension)

– video (mpeg)

6

Query Example

CloudCover (date: date, cloudDensity: raster16)

Cities (name: string, boundary: polygon, population: int)

Select name, cloudDensity.clip(boundary)
 from Cities, CloudCover
 where date = “9/15/94” and

boundary.area() > 900 and
 cloudDensity.clip(boundary).average() > 10

7

1995 Activities

l HDF support (Kristin)

l Tertiary storage integration (JieBing)

l Parallelization (Biswadeep and Wei)

l Ports and bug fixes (Nirapuma, Kathik, Roger)

8

l The NASA 500 don’t grok SQL

l What is HDF?

– File format for storing scientific data sets
l Vdata (i.e. a table or a relation)

l 8 bit raster image with optional color palette
l 24 bit raster image
l multidimensional array (with 1 unlimited dimension)
l scale data, Vgroup (like a directory)

– Library interface for working with data
l read a hyperslab of a multidimensional array
l “copy out” interface

– Reprocessing algorithms written against this interface

Why HDF??

9

Adding HDF Support to Paradise

l Goal: provide HDF link-compatible interface

l Approach:

– added a new ADT for each HDF data type (e.g.
raster, array, ...)

– metadata stored as normal relational attributes

– use auxiliary “system” tables for HDF information
that doesn’t map cleanly to relational data model

– replace lower-layer of HDF library with calls to
Paradise

10

Paradise HDF Architecture

Queries

Paradise
SQL

Paradise

Objects

Client Process

Application

HDF API Library

Paradise HDF Libary

Paradise ADTs

R
P
C

Shore Storage Manager

Scheduler

Extent Mgr.

Catalog Manager

Tuple Mgr.

Query
Optimizer

Paradise ADTs

R
P
C

Paradise Server

11

Mosaic/HDF with Paradise

Queries

Paradise
SQL

Paradise

Objects

Client Process

Mosaic

HDF API Library

Paradise HDF Libary

Paradise ADTs

R
P
C

Shore Storage Manager

Scheduler

Extent Mgr.

Catalog Manager

Tuple Mgr.

Query
Optimizer

Paradise ADTs

R
P
C

Paradise Server

12

Collage with Paradise

Queries

Paradise
SQL

Paradise

Objects

Client Process

Collage

HDF API Library

Paradise HDF Libary

Paradise ADTs

R
P
C

Shore Storage Manager

Scheduler

Extent Mgr.

Catalog Manager

Tuple Mgr.

Query
Optimizer

Paradise ADTs

R
P
C

Paradise Server

13

l Why is HDF on Paradise better?

– HDF files limited by OS maximum file size

– Paradise implementation provides chunking and
compression of raster images and arrays

– Integrated support for tertiary storage

– Improved performance via declustering across
multiple processors and/or storage devices

– Can mix SQL with HDF calls

– Can replace multiple HDF calls with one SQL call

So What?

14

Compress Tiles

Original 2D Raster

Break into tiles and add
map table

HDF Raster Implementation

15

Adding Tertiary Storage to Paradise

l Two Approaches:
– External

l “File” level migration (EMASS, Unitree)
l BIG Iron
l Application does the integration

– Integrated
l Tape becomes just another level in DBMS storage hierarchy
l Totally transparent to application
l Query optimizer can minimize expensive tape seeks
l Opportunity for “query batching”

16

Tertiary Storage Implementation

Paradise

File Mgr Object Mgr

Buffer Mgr

Disk I/O
Mgr

Tape I/O
Mgr

Shore Storage
Manager

Buffer Pool

Tape Block
Buffer Pool

Tape Block
Cache

Tape Volume
Disk Volumes

17

Tertiary Storage Details

l Tape and disk volumes look the same to the upper
levels of the system

l Tape volume manager implements:
– a “log structured” file system on the tape media
– disk cache for recently accessed tape blocks
– mount/dismount functions for tape robot

l Tape blocks are “big” - typically 512 Kbytes

l Query optimizer and tape volume manager
reorganizes tape accesses to minimizes seeks

18

Preliminary Tape Performance

Sequoia Query #9:
select polygon.shape, raster.data.clip(polygon.shape)
from polygon, raster
where (polygon.landuse = 92 or polygon.landuse = 91)
and raster.freq = 5 and raster.time = 1

0
5

10
15
20
25
30
35
40

Disk Unoptimized
Tape

Optimized
Tape

T
im

e
(s

ec
s)

19

Raster Header

Bounding
Box

Tile
Size

OID of Raster
Image

A CloudCover Tuple

date instr density

DISK

CloudCover
Extent

Tuple 1 Tuple 2 Tuple n
...

...

TAPE

Transparency Illustration

20

Parallelization

l Exploit technology developed as part of Gamma
project

l Scalable data archive
– desk top to mini-DAAC to full DAAC
– “shared-nothing” design

l Commodity hardware
– clusters of PCs connected via fast ethernet or ATM

l Eliminate need for network attached storage
– use of commodity tertiary storage devices such as

Quantum mini-robot (7 tapes @ 40 GB/tape @ 3 MB/
second @ $10K)

21

l Scalable almost w/o limits

l Commercial examples: Teradata, NCR 3600, IBM SP2

l With ATM and fast Ethernet “roll your own” by connecting
commodity workstations

Shared-Nothing

P1
P
2 Pn

Interconnection Network

MEM MEM MEM

22

CloudCover (inst: string, date: date, density: raster)

Declustering Big Rasters/Arrays

T1 T2 T3 T4

T5 T6 T7

T12

T8

T11

T14

T9 T10

T15 T16T13

densityinstr date
3/14Wayward-I-->

load

P
1

P
2

P
3

P
4

23

Parallelization Status

l Changes/additions required:
– code rewrite to do pipelining of tuples between

operators
– split/merge streams
– scheduler and declustering mechanisms
– lots of work and except for rasters/arrays and polygons,

no new technology

l Almost working!

24

Ports and Releases

l Ports to SGI, Solaris (PC and Sparc), & Linux
completed

l Ports to NT underway (server working)

l AIX port for SP2 underway

l Releases to Goodard, CMU, SAIC, Univ. of Florida,
others

25

1996 Plans

l Finish parallelism including rasters/arrays and
polygons

l Continue query optimization for queries against
tertiary storage

l Netscape front-end with Java
l Benchmarks

– HDF on Paradise vs. HDF on file system
– Queries on Tape
– “National Level” Sequoia benchmark

l Wider distribution of code releases

